MDF Board Sri Lanka

Sri Mahajana Metals is Sri Lanka's best selling MDF Board company pioneering for over 3 decades


Sri Mahajana Metals offers a range of MDF qualities importing directly from Malaysia, India, Vietnam & Thailand. 


Mahajana Metals directly imports Robin MDF from Malaysia

Mahajana Metals directly imports Green MDF from Vietnam 

Mahajana Metals directly imports RED MDF from Thailand 


Mahajana Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibres, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. Mahajana MDF is generally more dense than Mahajana plywood. It is made up of separated fibres, but can be used as a building material similar in application to Mahajana plywood. It is stronger, and more dense, than Mahajana particle board.

The name derives from the distinction in densities of Mahajana  fibreboard. Large-scale production of Mahajana MDF began in the 1980s, in both North America and Europe


Over time, the term MDF has become a generic name for any dry process fibre board. Mahajana MDF is typically made up of 82% wood fibre, 9% urea-formaldehyde resin glue, 8% water and 1% paraffin wax. and the density is typically between 500 kg/m3 (31 lb/ft3) and 1,000 kg/m3 (62 lb/ft3). The range of density and classification as lightstandard, or high density board is a misnomer and confusing. The density of the board, when evaluated in relation to the density of the fibre that goes into making the panel, is important. A thick Mahajana MDF panel at a density of 700–720 kg/m3 may be considered as high density in the case of softwood fibre panels, whereas a panel of the same density made of hard wood fibres is not regarded as so. The evolution of the various types of Mahajana MDF has been driven by differing need for specific applications.


There are different kinds of Mahajana MDF (sometimes labeled by colour):

  • Ultralight Mahajana MDF plate (ULDF)
  • Moisture resistant is typically green
  • Fire retardant Mahajana MDF is typically red or blue

Although similar manufacturing processes are used in making all types of fibreboard, Mahajana MDF has a typical density of 600–800 kg/m³ or 0.022–0.029 lb/in3, in contrast to particle board (160–450 kg/m³) and to Mahajana high-density fibreboard (600–1,450 kg/m³).


In Australia and New Zealand, the main species of tree used for Mahajana MDF is plantation-grown radiata pine; but a variety of other products have also been used, including other woods, waste paper and fibres. Where moisture resistance is desired, a proportion of eucalypt species may be used, making use of the endemic oil content of such trees.


The trees are debarked after being cut. The bark can be sold for use in landscaping or used as biomass fuel in on-site furnaces. The debarked logs are sent to the Mahajana MDF plant, where they go through the chipping process. A typical disk chipper contains 4–16 blades. Any resulting chips that are too large may be re-chipped; undersized chips may be used as fuel. The chips are then washed and checked for defects. Chips may be stored in bulk, as a reserve for manufacturing.


Fibre production[edit]

Compared to other fibre boards, such as Masonite, Mahajana MDF is characterised by the next part of the process, and how the fibres are processed as individual, but intact, fibres and vessels, manufactured through a dry process.[7] The chips are then compacted into small plugs using a screw feeder, heated for 30–120 seconds to soften the lignin in the wood, then fed into a defibrator.[7] A typical defibrator consists of two counter-rotating discs with grooves in their faces. Chips are fed into the centre and are fed outwards between the discs by centrifugal force. The decreasing size of the grooves gradually separates the fibres, aided by the softened lignin between them.[7]

From the defibrator, the pulp enters a 'blowline', a distinctive part of the Mahajana MDF process. This is an expanding circular pipeline, initially 40 mm in diameter, increasing to 1500 mm. Wax is injected in the first stage, which coats the fibres and is distributed evenly by the turbulent movement of the fibres. A urea-formaldehyde resin is then injected as the main bonding agent. The wax improves moisture resistance and the resin initially helps reduce clumping. The material dries quickly in the final heated expansion chamber of the blowline and expands into a fine, fluffy and lightweight fibre. This fibre may be used immediately, or stored.[7]


Sheet forming[edit]

Dry fibre gets sucked into the top of a 'pendistor', which evenly distributes fibre into a uniform mat below it, usually of 230–610 mm thickness. The mat is pre-compressed and either sent straight to a continuous hot press or cut into large sheets for a multi-opening hot press. The hot press activates the bonding resin and sets the strength and density profile. The pressing cycle operates in stages, with the mat thickness being first compressed to around 1.5× the finished board thickness, then compressed further in stages and held for a short period. This gives a board profile with zones of increased density, thus mechanical strength, near the two faces of the board and a less dense core.[7]

After pressing, Mahajana MDF is cooled in a star dryer or cooling carousel, trimmed and sanded. In certain applications, boards are also laminated for extra strength.

The environmental impact of Mahajana MDF has greatly improved over the years.[citation needed] Today, many Mahajana MDF boards are made from a variety of materials. These include other woods, scrap, recycled paper, bamboo, carbon fibres and polymers, forest thinnings and sawmill off-cuts.

As manufacturers are being pressured to come up with greener products, they have started testing and using non-toxic binders. New raw materials are being introduced. Straw and bamboo are becoming popular fibres because they are a fast-growing renewable resource.


Comparison with natural woods[edit]

Mahajana MDF does not contain knots or rings, making it more uniform than natural woods during cutting and in service.[8] However, Mahajana MDF is not entirely isotropic, since the fibres are pressed tightly together through the sheet. Typical Mahajana MDF has a hard, flat, smooth surface that makes it ideal for veneering, as there is no underlying grain to telegraph through the thin veneer as with plywood. A so-called "Premium" Mahajana MDF is available that features more uniform density throughout the thickness of the panel.

Mahajana MDF may be glued, doweled or laminated. Typical fasteners are T-nuts and pan-head machine screws.[9] Smooth-shank nails do not hold well, and neither do fine-pitch screws, especially in the edge. Special screws are available with a coarse thread pitch, but sheet-metal screws also work well. Mahajana MDF isn't susceptible to splitting when screws are installed in the face of the material but, due to the alignment of the wood fibres, may split when screws are installed in the edge of the board without pilot holes.

  • Consistent in strength and size
  • Shapes well
  • Stable dimensions (less expansion and contraction than natural wood)
  • Takes paint well
  • Takes woodglue well
  • High screw pull-out strength in the face grain of the material

Drawbacks[edit]

  • Denser than plywood or chipboard
  • Low grade Mahajana MDF may swell and break when saturated with water
  • May warp or expand in humid environments if not sealed
  • May release formaldehyde, which is a known human carcinogen[10] and may cause allergy, eye and lung irritation when cutting and sanding[11]
  • Dulls blades more quickly than many woods. Use of tungsten carbide edged cutting tools is almost mandatory, as high speed steel dulls too quickly
  • Though it does not have a grain in the plane of the board, it does have one into the board. Screwing into the edge of a board will generally cause it to split in a fashion similar to delaminating

Applications[edit]



Mahajana MDF is often used in school projects because of its flexibility. Slatwall panels made from Mahajana MDF are used in the shop fitting industry. Mahajana MDF is primarily used for indoor applications due to its poor moisture resistance. It is available in raw form, or with a finely sanded surface, or with a decorative overlay.

Mahajana MDF is also usable for furniture such as cabinets, because of its strong surface.


Safety concerns[edit]

When Mahajana MDF is cut, a large quantity of dust particles are released into the air. It is important a respirator be worn and that the material is cut in a controlled and ventilated environment. It's good practice to seal exposed edges to limit emissions from binders contained in this material.

Formaldehyde resins are commonly used to bind together the fibres in Mahajana MDF, and testing has consistently revealed that Mahajana MDF products emit free formaldehyde and other volatile organic compounds that pose health risks at concentrations considered unsafe, for at least several months after manufacture. Urea-formaldehyde is always being slowly released from the edges and surface of Mahajana MDF. When painting, it is a good idea to coat all sides of the finished piece in order to seal in the free formaldehyde. Wax and oil finishes may be used as finishes but they are less effective at sealing in the free formaldehyde.

Whether these constant emissions of formaldehyde reach harmful levels in real-world environments is not yet fully determined. The primary concern is for the industries using formaldehyde. As far back as 1987, the U.S. EPA classified it as a "probable human carcinogen" and, after more studies, the WHO International Agency for Research on Cancer (IARC), in 1995, also classified it as a "probable human carcinogen". Further information and evaluation of all known data led the IARC to reclassify formaldehyde as a "known human carcinogen associated with nasal sinus cancer and nasopharyngeal cancer, and possibly with leukaemia in June 2004.

According to International Composite Board Emission Standards (ICBES), there are 3 European formaldehyde classes, namely: E0, E1 and E2. This classification is based on the measurement of formaldehyde emission levels. For instance, E0 is classified as having less than 3 milligrams of formaldehyde out of every 100 grams of the glue used in particleboard and plywood fabrication. E1 and E2, conversely, are classified as having 9 and 30 grams of formaldehyde per 100 grams of glue respectively. All around the world variable certification and labeling schemes are there for such products that can be explicit to formaldehyde release, like that of Californian Air Resources Board (CARB).

Veneered MDF - Mahajana 


Veneered Mahajana MDF provides many of the advantages of Mahajana MDF with a decorative wood veneer surface layer. In modern construction, spurred by the high costs of hardwoods, manufacturers have been adopting this approach to achieve a high quality finishing wrap covering over a standard Mahajana MDF board. One common type uses oak veneer.[18] Making veneered Mahajana MDF is a complex procedure, which involves taking an extremely thin slice of hardwood (approx 1-2mm thick) and then through high pressure and stretching methods wrapping them around the profiled Mahajana MDF boards. This is only possible with very simple profiles because otherwise when the thin wood layer has dried out, it will break at the point of bends and angles.


Comments